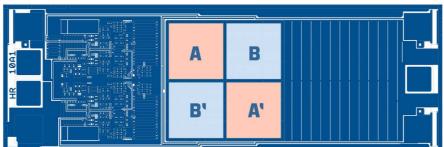

Two differential pairs of photodiodes with amplifiers


PR5401 consists of two pairs of photodiodes placed in opposite quadrants with diffferential amplifiers. If illuminated uniformly, the output is Vcc/2, but depends on the balance of illumination on each pair.

APPLICATIONS

- Light beam alignment
- 2D optical tracking
- tilt sensor

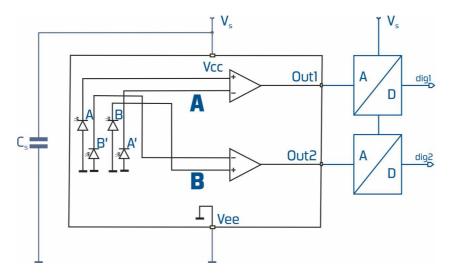
BLOCK DIAGRAM

Light orange: A photodiodes; light blue: B photodiodes

PACKAGES

The PR5401 is offered as bare die or in a tiny optical DFN package.

a) IC as bare die - PR5401-BD


Die size: 2,500 μm x 900 μm

ODFN-4L 1.8mm \times 2.9mm package.

Application Circuit

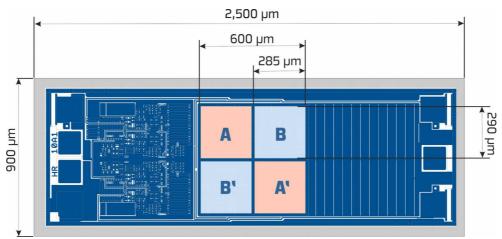
The output is usually connected to a power amplifier or an analog-digital converter.

Electrical Characteristics

ABSOLUTE MAXIMUM RATINGS

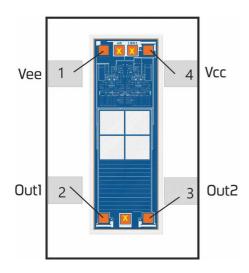
Parameter		Min	Тур	Max	Units
V _{cc} (supply voltage)		-0,3		8	V
V _{PIN} (voltage @ other pins)		-0,3		V _{cc} +0,3	V
Operating Temperature	PR5401- BD PR5401 -TM	-40 -40		85 85	°C
Storage Temperature Range	PR5401- BD PR5401 -TM	-55 -40		125 100	°C
T _J (Junction Temperature)	PR5401- BD PR5401 -TM	-40 -40		85 85	°C
Electrostatic Discharge (ESD) Protection @ all pins	HBM	4			kV

OPERATING CHARACTERISTICS


 $V_{CC} = 5.0 \text{ V}, T_{J} = -40...85^{\circ}\text{C} \text{ (unless otherwise noted)}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
V _{cc}	Supply voltage		2.5	3,3	8	V
I _{cc}	Supply current (no load)		0.23		1.0	mA
Output cha	racteristics					
I _{Load} (Lo)	Out current (Out vs. GND)				0.1	mA
Photosense	ors					
λ _{ar}	Spectral application range	Se(\lambda ar)=0.25*\lambda_peak	500		950	nm
λ_{peak}	Peak sensitivity			800		nm

Test pins are used for chip test only. Their use is not further described in this document.

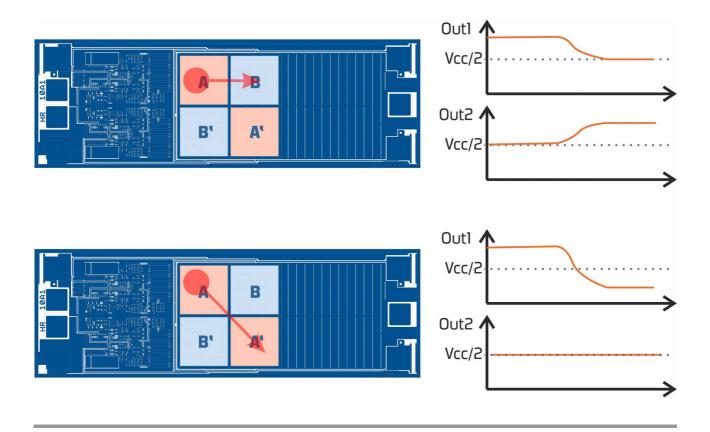

Photodiodes - Dimensions

General dimensions:

- Die size: $2,500 \mu m \times 900 \mu m$ (measured between centres of scribe lane)
- Photodiodes active area: approx. 285 µm x 290 µm x 4
- Pad window: 120 μm x 120 μm
- For ODFN-4L package: Chip centre may be offset by up to 200 μ m from package centre in any direction.

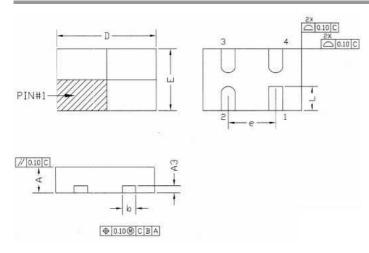
PIN DESCRIPTION

Pin No	Pin Name	Pin Function Description		
1	Vee	negative supply voltage		
2	Out1	A channel amplifier output		
3	Out2	B channel amplifier output		
4	Vcc	positive supply voltage		


Test pins are for chip test only and not described in this document.

Application Examples

The following applications examples are meant as suggestions. PREMA does not guarantee usability and cannot give application support for the use in specific devices.


OPTICAL BEAM CENTERING OR MOTION DETECTION

PR5401-TM - Package Dimensions

ODFN-4L-1.8x2.9 PACKAGE

	MILLIMETERS			INCHES			
SYM	MIN	NOM	MAX	MIN	NOM	MAX	
Α	0.85	0.90	0.95	0.033	0.035	0.037	
A3	0.20 REF.			0.008 REF.			
ь	0.35	0.40	0.45	0.014	0.016	0.018	
D	2.80	2.90	3.00	0.110	0.114	0.118	
E	1.70	1,80	1,90	0.066	0.070	0.074	
Θ	1,40 BSC			0.055 BSC			
L	0.60	0.70	0.80	D.023	D.027	0.031	

NOTES:

- CONTROLLING DIMENSION IN MM.

 PACKAGE DIMENSION DOES NOT INCLUDE MOLD
 FLASH, PROTRUSIONS, BURRS OR METAL SMEARING,
 COPLANARITY APPLIES TO THE EXPOSED PAD AS
 WELL AS THE EXPOSED TERMINALS. MAXIMUM COPLANARITY SHALL BE 0.003 [0.08].
- WARPAGE SHALL NOT EXCEED 0,004 [0.10].

A lead-free solder profile with a peak temperature of 260°C or less, according to J-STD-020 should be followed.

Samples shipped without moisture barrier bag must be dry-baked according to JEDEC guidelines before soldering. Manual soldering may not be possible or must be done with utmost

Direct infrared heating should be avoided; pure convection heating is recommended. There is no experience with gas phase soldering.

PRELIMINARY DATASHEET - DATA MAY CHANGE WITHOUT NOTICE

Disclaimer

Information provided by PREMA is believed to be accurate and correct. However, no responsibility is assumed by PREMA for its use, nor for any infringements of patents or other rights of third parties which may result from its use. PREMA reserves the right at any time without notice to change circuitry and specifications.

Life Support Policy

PREMA Semiconductors products are not authorized for use as critical components in life support devices or systems without the express written approval of PREMA Semiconductor. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PREMA Semiconductor GmbH

Robert-Bosch-Str. 6 55129 Mainz Germany Phone: +49-6131-5062-0 Fax: +49-6131-5062-220

Web site: www.prema.com Email: <u>prema@prema.com</u>

© PREMA Semiconductor GmbH 2017 | rev. 1742 -- PRELIMINARY DATASHEET --